Clustering High Dimensional Categorical Data via Topographical Features

نویسندگان

  • Chao Chen
  • Novi Quadrianto
چکیده

Analysis of categorical data is a challenging task. In this paper, we propose to compute topographical features of high-dimensional categorical data. We propose an efficient algorithm to extract modes of the underlying distribution and their attractive basins. These topographical features provide a geometric view of the data and can be applied to visualization and clustering of real world challenging datasets. Experiments show that our principled method outperforms state-of-the-art clustering methods while also admits an embarrassingly parallel property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

An Extension of Self-organizing Maps to Categorical Data

Self-organizing maps (SOM) have been recognized as a powerful tool in data exploratoration, especially for the tasks of clustering on high dimensional data. However, clustering on categorical data is still a challenge for SOM. This paper aims to extend standard SOM to handle feature values of categorical type. A batch SOM algorithm (NCSOM) is presented concerning the dissimilarity measure and u...

متن کامل

Holo-Entropy Based Categorical Data Hierarchical Clustering

Clustering high-dimensional data is a challenging task in data mining, and clustering high-dimensional categorical data is even more challenging because it is more difficult to measure the similarity between categorical objects. Most algorithms assume feature independence when computing similarity between data objects, or make use of computationally demanding techniques such as PCA for numerica...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Study on Clustering Large Data Using Fuzzy Adaptive Resonance Theory

clustering is an approach that is used to form group of similar classes. Here to cluster the mixed type of data the unsupervised feature learning was used to achieve the sparse representation (SR) which makes it easier for the clustering algorithms to separate the data. SR provides simple interpretation of the input data in terms of small number of parts by extracting the unknown composition in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016